Overblog Suivre ce blog
Editer l'article Administration Créer mon blog
28 avril 2010 3 28 /04 /avril /2010 10:29

     À partir du produit impair ( N )  de 2 nombres premiers (  N  =  P 1  .  P 2  ),

 On a défini des nombres de pierre dont le Delta Noir  ( Dn )   différence des deux nombres premiers.

 

                                   Dn  =  P1  -  P 2      avec  P 1  >  P 2

 

Utilisée, par exemple au sein de l'équation du Second Degré :   X 2  +  Dn . X  - N = 0

le Delta Noir pourrait permettre la factorisation de ( N ).

C'est une valeur paire qui peut être scrutée comme la somme des facteurs.

 

   Afin de réduire la progression et donc augmenter le pas lors d'une telle recherche,

on peut s'appuyer sur des congruences particulières en plus de celles déjà définies

dans l'article " Rencontrons les nombres de Pierre "

 

     On connait :      Dn ≡ 2 [ 6 ]  pour  ( N ) du type (b)

                                       ≡ 4 [ 6 ]  pour  ( N ) du type (c)

                                       ≡ 0 [ 6 ]  pour  ( N ) de types (a) et  (d)

 

On peut ajouter que :

 

           Lorsque    ( N )  ≡ 3  [ 4 ]     alors     Dn  ≡ 2  [ 4 ]

 

           Lorsque   ( N )  ≡ 1   [ 4 ]     alors     Dn  ≡  0  [ 4 ]

 

 

Ce qui permet de réduire le temps de recherche " naïf " en déduisant des pas de progression

en fonction, non seulement du type de (N), mais aussi de sa confruence Modulo [ 4 ].

 

 

 

                                                    FRANCILLETTE thierry jules

 

Partager cet article

Repost 0
Published by matreadel - dans mathématiques
commenter cet article

commentaires

Présentation

  • : Le blog de matreadel.over-blog.com
  • : impressions et raisonnements mathématiques
  • Contact

Recherche

Liens