Overblog Suivre ce blog
Editer l'article Administration Créer mon blog
31 mars 2010 3 31 /03 /mars /2010 13:11

 Les travaux d'Alan Turingsont admis comme ayant mis en évidence les difficultés "calculatoires"

que pourraient avoir une machine visant l'exactitude.

Je parlerai ici principalement de l'incalculabilité 

et interviendrai ultérieurement sur l'intelligence artificielle, en considérant que l'on peut créer

un programme d' IA traitant le langage et cela avec une compréhension sémantique importante

dès lors que l'on met en place une structure de langage (par exemple "jane-tarzan"...) dont les composantes (mots, ...) sont définies selon un principe permettant au calculateur d'en tirer un maximum de compréhension aiguisant alors ses réponses.

( Programme de 150 Ko que j'ai effectué sur une TI 92...dictionnaire non complet)

 

     De manière schématique, mais néanmoins exacte, on peut établir  comme suit

le raisonnement qu'a tenu Alan Turing en s'attaquant "au calculable" :

 

     Une machine (A) traite une variable (x) à travers une fonction (f) en établissant de manière formelle  

si OUI ou NON,  f(x) existe.

 

Si  OUI :    la machine s'arrête

Si  NON:    la machine tourne indéfiniment

 

La procédure expérimentale se poursuit  de telle sorte

que le comportement de la machine (A) vis à vis de (x) en (f) soit inversé

en définissant le comportement d'une autre machine, (B), vis à vis de cette même variable.

 

C'est à dire que lorsque (A) s'arrêtait, (B) est vouée à ne pas le faire; et inversement.

 

   Sur la base de cette construction, somme toute assez simple, il établit que l'on ne peut

conclure à une certitude concernant le comportement que pourrait avoir une machine face à un calcul

à effectuer. Puisque selon la logique expérimentale précédente, une machine pourrait ne pas

s'arrêter même pour une réponse positive.

 

Mais Turing va plus loin, en demandant à la machine (B) de se traiter en tant que variable,

ce qu'à l'évidence elle ne peut accomplir par manque d'autoréférence.

    Etape qui ne fait qu'entériner sa vision des choses.

 

Je considère qu'il y a dans ce raisonnement une erreur.

 

   Car on demande à (B) de se traiter comme une variable (x), sans que le protocole n'établisse

un passage de (B) en tant que (x) dans la machine (A).

 

C'est à dire que normalement, c'est (A) qui définit le comportement de (B) en validant ou pas

l'existence de f(x).

 

La machine (B) ne peut se traiter avant que (A) n'ait dit ce que vaut f( x=B).

 

                                         FRANCILLETTE thierry jules

Partager cet article

Repost 0
Published by matreadel
commenter cet article

commentaires

Clovis Simard 23/06/2012 12:51

Blog(fermaton.over-blog.com)No-27, MATHÉMATICIEN- Qui suis-je ?

Présentation

  • : Le blog de matreadel.over-blog.com
  • : impressions et raisonnements mathématiques
  • Contact

Recherche

Liens